

Code No: C0410 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I - Semester Examinations March/April-2011 STRESS ANALYSIS AND VIBRATION (CAD/CAM)

Time: 3hours

Max.Marks:60

Answer any five questions All questions carry equal marks

1.	(a) (b)	State the assumptions in two dimensional elasticity theory. Explain stress analysis in rotating discs.	(6) (6)	
2.	(a) (b)	Derive expressions for bending of circular plate with constant thi Explain shell theory with assumptions if any	ckness (6+6)	
3.	(a) (b)	Define vibration isolation and transmissibility. In a single-degree damped vibrating system, a suspended mass makes 30 oscillations in 18 seconds. The amplitude decreases the initial value after 5 oscillations. Determine (i) the stiffness of (ii) the logarithmic decrement (iii) the damping factor, and damping coefficient.	to 0.25 of the spring	
4.	mm a natura	A steel bar 22 mm wide and 45 mm deep is freely supported at two points 800 mm apart and carries a load of 180 kg midway between them. Determine the natural frequency of the transverse vibrations, neglecting the weight of the bar. Take $E = 250 \text{ GN/m}^2$. (12)		
5	is sub	A simply supported bridge of span 20m , $EI = 8$ GN m ² and weight is 20000 kg/m is subjected to a load of <i>P sin 2πft</i> , which moves with a velocity 20 m/s. If natural frequency is 5 Hz, what is the largest amplitude of vibration in the bridge? (12)		
6.	(a) (b)	Explain principle of orthogonality. What is significance of modal analysis?	(6+6)	
7.	Deriv	e Lame's equations for thick cylinders and state the assumptions.	(12)	
8.	Write (a) (b)	short notes on the following Contact Stresses Stress Concentration	(12)	

(c) Logarithmic decrement
